rfba — аналитика, бизнес, страхование, рынок forex
   
   
 
? ?
 

Ряды высшая математика (решение задач и примеров)

Опубликовано: 16.08.2017

видео ряды высшая математика (решение задач и примеров)

Математика 1 класс. Урок 1. Сколько всего? (2012)

Задача 1

Вычислить определители:

;

.

Решение



,

Задача 2

Вычислить определитель:

.

Решение

Используя теорему Лапласа, разложим определитель по элементам третьего столбца

.

Задача 3

Найти матрицу, обратную к матрице .

Решение

Находим определитель матрицы и все алгебраические дополнения :


Онлайн решение задач Математика Линал Курсовые работы

;

;

;

;

;

;

;

;

;

.

Ответ: Обратная матрица имеет вид:

.

Задача 4

С помощью элементарных преобразований вычислить ранг матрицы

.

Решение

Прибавляя к последней строке учетверенную вторую строку и сокращая затем последнюю строку на , а после этого складывая последний столбец со вторым и третьим последовательно, получим


Жириновский о математике Репетиторы отдыхают

.

Знак ~ обозначает, что матрицы получены одна из другой с помощью элементарных преобразований и их ранги равны. Сокращая второй столбец на два и вычитая первый столбец со всех остальных столбцов, а затем вычитая последнюю строку из первой и меняя местами столбцы, получаем

.

Ответ: Ранг матрицы равен двум.

Задача 5

Решить следующую систему линейных алгебраических уравнений по правилу Крамера:

;

Решение

Вычислим главный определитель системы и вспомогательные определители , ,.

.

;

;

.

По формуле Крамера, получим

;

; .

Задача 6

Исследовать на совместность систему линейных алгебраических уравнений и, в случае положительного ответа, найти её решение.

Решение

Матрица и имеют вид

,

.

Их ранги равны . Система совместна. Выделим следующую подсистему

Считая и известными, решение подсистемы находим по формулам Крамера . Оно имеет вид

; ,

где , - могут принимать произвольные значения. Пусть , где Тогда ответом будет служить множество

Задача 7

Даны начало и конец вектора . Найти вектор и его длину.

Решение

Имеем , откуда или .

Далее , т.е. .

Задача 8

Даны вершины треугольника , и . Найти с точность до угол при вершине .

Решение

Задача сводится к нахождению угла между векторами и :

, ; . Тогда , .

Задача 9

Даны вершины треугольника , и . Вычислить площадь этого треугольника.

Решение

Так как площадь треугольника равна половине площади параллелограмма, построенного на векторах и как на сторонах, т.е. , то . Найдем векторы и :

; ; .

Вычислим их векторное произведение:

,

,

Откуда

. Следовательно, (кв. ед.).

Задача 10

Даны вершины треугольной пирамиды , , и . Найти ее объем.

Решение

Имеем , и . Найдем векторное произведение

,

.

Этот вектор скалярно умножим на вектор :

.

Это смешанное произведение можно найти непосредственно по приведенной формуле:

.

Следовательно, объем:

, (куб. ед.).

Задача 11

Составить уравнение прямой, проходящей через точки и .

Решение

За первую вершину примем (на результат это не влияет); следовательно,

,

,

,

.

, , ,

Ответ: - общее уравнение искомой прямой.

Задача 12

Составить уравнение прямой, проходящей через точку , параллельно и перпендикулярно прямой .

Решение

Найдем угловой коэффициент данной прямой: . Согласно условиям параллельности и перпендикулярности двух прямых, угловой коэффициент параллельной прямой будет равен , а перпендикулярной прямой будет равен –4 /3. Составляем уравнения искомых прямых:

1) параллельной: , - общее уравнение прямой, параллельной данной;

2) перпендикулярной: , - общее уравнение прямой, перпендикулярной к данной.

Задача 13

Найти расстояние между двумя параллельными прямыми и .

Решение

Выберем на одной из данных прямых точку . Пусть . Для определения координат точки на прямой одну координату выберем произвольно, а вторую определим из уравнения. Возьмём ; тогда , и . По формуле расстояния от точки до прямой находим:

; .

Задача 14

Исследовать на абсолютную и условную сходимость

.

Решение

Проверим выполнение условий теоремы Лейбница

а)

б)

(при вычислении предела применялось правило Лопиталя). Условия выполняются, следовательно, ряд сходится. Исследуем ряд на абсолютную сходимость.

Имеем:

Тогда по признаку Даламбера:

, и ряд, составленный из абсолютных величин элементов исходного ряда, будет сходится. Следовательно, ряд сходится абсолютно.

а)

б) ,

следовательно ряд - сходится.

2) Пусть . Тогда . Применим признак сравнения, сравнивая его с расходящимся гармоническим рядом . Имеем

.

Таким образом, ряд - расходится.

Ответ

Область сходимости ряда есть интервал .

Задача 15

Вычислить предел .

Решение

Для вычисления этого предела непосредственно применить указанные теоремы нельзя, так как пределы функций, находящихся в числителе и знаменателе, не существуют. Здесь имеется неопределенность вида , для раскрытия которой в данном случае следует числитель и знаменатель дроби разделить на наибольшую степень переменной , т.е. на :

,

так как при .

Задача 16

Вычислить придел

Решение

Т ак как предел знаменателя равен нулю, то теорема 3 неприменима. Здесь имеется неопределенность вида . Для раскрытия этой неопределенности в числителе и знаменателе следует выделить бесконечно малый множитель, на который затем сократить дробь. Для этого воспользуемся формулой разложения квадратного трехчлена на множители

, где - его корни.

.

Задача 17

Вычислить предел .

Решение

Умножив числитель и знаменатель на выражение, сопряженное к числителю, получим:

.

Задача 18

Вычислить предел .

Решение

Легко убедиться, что и при .

Поэтому

.

Задача 19

Вычислить предел

Решение

Для того, чтобы воспользоваться вторым замечательным пределом, в показателе степени выделим величину, обратную второму слагаемому основания и получим

.

Задача 20

Найти предел .

Решение

.

Задача 21

Продифференцировать функцию .

Решение

.

Задача 22

Вычислить при помощи дифференциала .

Решение

Пусть . Тогда . Обозначим: ; . Отсюда . Находим и .

.

Итак, .

Задача 23

Найти .

Решение

Подстановка в заданную функцию значения приводит к неопределенности вида . Применив правило Лопиталя, получим:

.

Задача 24

Исследовать на экстремум функцию

.

Решение

1. Находим область определения функции:.

2. Находим производную функции: .

3. Находим критические точки, решая уравнение или . Критические точки , .

4. Область определения функции разбиваем критическими точками и на интервалы, в каждом из которых определяем знак , делаем вывод о характере монотонности функции на каждом из интервалов и отмечаем наличие экстремумов.

Банки и банковские услуги .

Вы можете перейти в конец и оставить комментарий. Уведомления сейчас отключены.

 

Новости

Тур Пешком по Украине

Кто из нас не мечтает о хорошем отдыхе после тяжелого трудового года? Да конечно же все) Однако все отдыхают по разному - в зависимости от своих предпочтений и финансовых возможностей. Кто-то предпочитает

Где выбрать насос
Все мы знаем о том, что скоро наступит дачный сезон и нам надо будет как-то добывать воду. И здесь у многих на дачах или же на личных участках, где вы, допустим, проживаете постоянно, имеется скважина.

Автоломбард самара
Подобный вид бизнеса не подлежит регулированию. Единственным обязательством является постановка на специальный учет в Росфинмониторинговую организацию. Процентную ставку владелец вправе устанавливать

На этом сайте
В нашем случае необходимо подбирать ключевые слова под каждый свой товар, каждое изделие. Например, вы продаете вязаный плед спицами. Сейчас я на примере покажу как это делается. Сначала мы поработаем

Кредит под залог недвижимости в Алматы
Часто в жизни человека бывают моменты, когда ему срочно необходимы деньги. Это может быть болезнь, несчастный случай, желание открыть свой бизнес. Но друзья и родственники не всегда могут вам помочь.

Купить и обменять Litecoin
19 сентября 2017 года, Чарли Ли, создатель Litecoin, и Alexlyp, из проекта Decred, смогли обменять 1, 337 LTC на 2, 4066 DCR. И хотя поначалу они сталкивались с трудностями, им удалось завершить своп

Производство и оптовая продажа кожаных
Самый простой состав мыла: животный жир (привет, защитникам животных! ) и щелочь (зола) – таким мылом пользовались наши предки.   За сотни лет состав мыла претерпел значительные изменения.

Контроль легкового транспорта
В настоящее время как никогда стал актуальным вопрос о добросовестном использовании автомобилей компании, маршрутных такси и грузового автомобиля. Для того, что провести отслеживание как маршрута автомобиля,

Основные плюсы применения спутниковой навигации
Использование современных информационных технологий, средств связи и навигационных возможностей позволяет в значительной степени повысить эффективность работы практически во все сфера, на все предприятиях

Очистка кровли
Крышу сооружения требуется регулярно очищать от снега и наледи. Для этого существует не одна причина. Во первых, под воздействием большого веса накопленных твердых осадков, происходит излишнее давление

Свежее


Случайные записи


rss